Stereoselective Total Synthesis of Dodoneine

by Baggu Chinnababu, Sudina Purushotham Reddy, Chitturi Bhujanga Rao, Karuturi Rajesh, and Yenamandra Venkateswarlu*

Natural Products Laboratory, Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500007, India (phone: +91-40-27193167; fax: +91-40-27160512; e-mail: luchem@iict.res.in)

A simple and highly efficient stereoselective total synthesis of dodoneine (1), a naturally occurring bioactive 5,6-dihydro-2*H*-pyran-2-one, was achieved. The synthesis involved *Keck*'s asymmetric allylation, iodine-induced electrophilic cyclization, and *Grubbs*' catalyzed ring-closing metathesis as key steps.

Introduction. – The 6-substituted 5,6-dihydro-2*H*-pyran-2-one **A**, an α,β -unsaturated δ -lactone, is an important structural subunit in many biologically promising natural products. This unit is of interest for a wide variety of biological activities, such as insect-growth inhibitors and insect antifeedent, cytotoxic activities, and antifungal and antitumor properties [1]. The pyran units are widely distributed in all parts including leaves, stems, flowers and fruits of the plant families Lamiaceae, Piperaceae, Lauraceae, and Annonaceae (for a recent review on the synthesis of naturally occurring representatives of the pyran-containing compound class, see [2]). Dodoneine (=(6R)-5.6-dihydro-6-[(2S)-2-hydroxy-4-(4-hydroxyphenyl)butyl]-2H-pyran-2-one; 1), a member of this group, has been isolated from Tapinanthus dodoneifolius, a parasitic medicinal plant that grows on the Sheanut trees in Loumbila, West Africa [3]. The structure of 1 was determined from spectroscopic data and X-ray diffraction analysis of a crystalline derivative. Considering the structure as well as its activity and in continuation of our interest in the synthesis of biologically active natural products [4], we report herein an efficient alternative way for the stereoselective synthesis of 1. While our work on the synthesis of 1 was in progress, four different syntheses of this molecule have appeared [5].

Our planned approach to dodoneine (1) involves *Grubbs*' catalyzed ring-closing metathesis, an asymmetric allylation, and a diastereoselective iodolactonization as the chirality-inducing steps starting from 4-hydroxybenzaldehyde (*Scheme 1*).

Scheme 1. Retrosynthetic Approach to Dodoneine (1)

Results and Discussion. – The retrosynthetic analysis of dodoneine (1) (*Scheme 1*) suggested to start the synthesis with commercially available 4-hydroxybenzaldehyde (2), which was protected with BnBr to yield the corresponding benzyl ether. The benzyl ether was subjected to C₂ homologation with ethyl (triphenylphosphoranylidene)acetate to afford an α,β -unsaturated ester, which on reduction with LiAlH₄ afforded alcohol 3 (Scheme 2). The saturated alcohol 3 was oxidized with 2-iodoxybenzoic acid (IBX) in DMSO to afford the corresponding aldehyde 4, which was subjected to the catalytic asymmetric allylation with an allylstannane developed by Keck and coworkers [6] to furnish the homoallylic alcohol 5 in 79% yield with an excellent enantioselectivity of 94.7% ee (see Exper. Part). The homoallylic alcohol 5 was treated with di(tert-butyl) dicarbonate ((Boc)₂O) in the presence of DMAP in MeCN [7] to afford the homoallylic tert-butyl carbonate 6, which was subjected to the diastereoselective iodolactonization [8] with I_2 in dry MeCN at -20° to furnish the cyclic iodocarbonate 7 in 82% yield as a single diastereoisomer (as determined by ¹H-NMR analysis). Iodocarbonate 7, upon exposure to basic MeOH solution [8], gave the desired 'syn'-epoxy alcohol 8 in 86% yield. The epoxy alcohol 8 was protected with BuMe₂SiCl/1*H*-imidazole to afford (*tert*-butyl)dimethylsilyl ether **9**. Now, the terminal oxirane moiety of 9 was opened with CH₂=CHMgBr to provide a diastereoisomer mixture ('syn'/'anti' 43:57 by 1H-NMR analysis) of homoallylic alcohols. The required 'syn'-alcohol 10 was separated by CC, and its structure was determined by spectroscopic analysis of the corresponding acetonide **B**, in the ¹³C-NMR spectrum of which two Me groups and the quaternary C-atom appeared at $\delta(C)$ 20.3, 30.4, and 97.8 [9]. The alcohol 10 was then treated with acryloyl chloride (= prop-2-enoyl chloride) to afford the diene ester 11 in 90% yield. Compound 11 was subjected to an intramolecular ring-closure metathesis reaction in the presence of the 1st generation *Grubbs*' catalyst to yield α,β -unsaturated lactone 12 in 82% yield [10]. The protecting benzyl ether and (tert-butyl)dimethylsilyl ether moieties of 12 were removed with TiCl₄ to afford dodoneine (1). The physical and spectroscopic data of the synthetic dodoneine (1) were identical to those reported for natural dodoneine [3].

Scheme 2

a) K₂CO₃, BnBr, DMF, $0^{\circ} \rightarrow \text{r.t.}$, 6 h; 83%. b) Ph₃PCHCOOEt, benzene, reflux, 2 h; 90%. c). LiAlH₄, THF, 80°, 0.5 h; 80%. d) 2-Iodoxybenzoic acid, DMSO, CH₂Cl₂, 3 h; 90%. e) (R)-BINOL, 4-Å molecular sieves, (i-PrO)₄Ti, allyltributylstannane, CH₂Cl₂, −78 → −20°, 72 h; 79%. f) (Boc)₂O, DMAP (= N,N-dimethylpyridin-4-amine), MeCN, r.t., 5 h; 94%. g) I₂, MeCN, −20°, 12−15 h; 82%. h) K₂CO₃, MeOH, $0^{\circ} \rightarrow \text{r.t.}$, 2 h; 86%. i) 'BuMe₂SiCl, 1H-imidazole, CH₂Cl₂, r.t., 4.5 h; 88%. j) CH₂=CHMgBr, Et₂O, 0°, 1.5 h; 76%. k) Acryloyl chloride, Et₃N, $0^{\circ} \rightarrow \text{r.t.}$, 1 h; 90%. l) Grubbs' first generation catalyst, CH₂Cl₂, 50°, 28 h; 82%. m) TiCl₄, CH₂Cl₂, 0°, 2 h; 82%.

In conclusion, an efficient and straightforward total synthesis of dodoneine (1) was achieved. The *Keck* asymmetric allylation of aldehyde 4 for the introduction of chirality and the subsequent diastereoselective I_2 -induced electrophilic cyclization constitute the

key reactions for the construction of the 'syn'-1,3-diol moiety. The synthetic strategy described here has a significant potential for the synthesis of a variety of other biologically important substituted 1,3-diol-containing natural products.

The authors thank the Ministry of Earth Sciences (MoES) and the *Council of Scientific and Industrial Research* (CSIR), New Delhi, for financial assistance, and the director of the IICT.

Experimental Part

General. Solvents were dried over standard drying agents and freshly distilled prior to use. The reagents were purchased from *Aldrich* and *Acros* and were used without further purification unless otherwise stated. All moisture-sensitive reactions were carried out under N_2 . Org. solns. were dried (Na_2SO_4) and concentrated below 40° . Column chromatography (CC): silica gel (*Acme*'s 60-120 mesh). HPLC: *Eurocel 01* (250×4.6 mm, particle size $5 \mu m$); mobile phase hexane/i-PrOH 90:10; flow rate 1.0 ml/min; detection with a photo-diode array. Optical rotations: *Horiba* high-sensitive polarimeter SEPA-300; at 25° . IR Spectra: *Perkin-Elmer-IR-683* spectrophotometer with NaCl optics; $\bar{\nu}$ in cm⁻¹. 1 H-(200 and 300 MHz) and 1 3C-NMR (50 and 75 MHz) Spectra: *Varian-Gemini-FT-200* and *Bruker-Avance-300* instrument; in CDCl₃; δ in ppm rel. to Me_4Si as internal standard, Methodologies instrument, Methodologies instrument, Methodologies (*Agilent-Technologies* instrument, Methodologies); in Methodologies (rel. %).

4-(Benzyloxy)benzaldehyde. To a soln. of aldehyde **2** (10.0 g, 81.88 mmol) and K_2CO_3 (33.86 g, 245.6 mmol) in dry DMF (70 ml) at 0° was added BnBr (90.21 mmol, 10.9 ml) under N_2 , and the mixture was stirred overnight. After completion of the reaction (TLC), it was quenched with H_2O (50 ml) and 50% AcOEt/hexane (60 ml) at 0° and then extracted with AcOEt (3 × 50 ml). The combined org. extract was washed with brine, dried (Na_2SO_4), and concentrated, and the residue purified by CC (AcOEt/hexane 1:1): pure 4-(benzyloxy)benzaldehyde (14.41 g, 83%). White solid. IR (neat): 2956, 1741, 1681, 1510, 1251. 1H -NMR (200 MHz): 9.84 (s, 1 H); 7.80 (d, J = 8.7, 2 H); 7.43 – 7.35 (m, 5 H); 7.08 (d, J = 8.7, 2 H); 5.02 (s, 2 H). ^{13}C -NMR (50 MHz): 199.6; 163.7; 133.5; 132.1; 129.9; 128.6; 128.0; 127.5; 114.7; 69.9. ESI-MS: 235 ([M + Na] $^+$).

Ethyl (2E)-3-[4-(Benzyloxy)phenyl]prop-2-enoate. To a stirred soln. of 4-(benzyloxy)benzaldehyde (5.0 g, 23.58 mmol) in dry benzene (50 ml) was added ethyl (triphenylphosphoranylidene)acetate (10.66 g, 30.65 mmol), and the mixture was refluxed for 2 h. After completion of the reaction (TLC), the mixture was diluted with H_2O (40 ml) and extracted with AcOEt (3 × 25 ml), and the combined extract was concentrated. The residue was purified by CC (AcOEt/hexane 2:8): pure ethyl (2E)-3-[4-(benzyloxy)phenyl]prop-2-enoate (5.9 g, 90%). Colorless solid. IR (neat): 1710, 1650, 1565, 1510, 1243, 943. 1 H-NMR (200 MHz): 7.61 (d, J = 16.1, 1 H); 7.43 – 7.22 (m, 7 H); 6.88 (d, J = 8.7, 2 H); 6.25 (d, J = 16.1, 1 H); 5.08 (g, 2 H); 4.20 (g, J = 7.2, 2 H); 1.28 (g, g = 7.2, 3 H). 13 C-NMR (50 MHz): 166.27; 160.2; 143.8; 136.2; 129.4; 128.3; 127.8; 127.1; 115.6; 114.9; 69.7; 59.9; 14.2. ESI-MS: 305 ([m + Na] $^+$).

3-[4-(Benzyloxy)phenyl]propan-1-ol (3). To a stirred soln. of LiAlH₄ (0.269 g, 7.09 mmol) in dry THF was added ethyl (E)-3-[4-(benzyloxy)phenyl]prop-2-enoate (2 g, 7.09 mmol) at 0° under N₂ and refluxed for 0.5 h. After completion of the reaction (TLC), the mixture was diluted with H₂O (50 ml) at 0° and extracted with AcOEt (2×15 ml). The combined org. extract was washed with brine, dried (Na₂SO₄), and concentrated, and the residue purified by CC (hexane/AcOEt 3:7): pure 3 (1.33 g, 80%). Colorless crystalline solid. IR (neat): 3432, 1612, 1509, 1249. ¹H-NMR (200 MHz): 7.43 – 7.35 (m, 5 H); 7.08 (d, J = 8.7, 2 H); 6.88 (d, J = 8.7, 2 H); 5.01 (s, 2 H); 3.65 (t, J = 7.1, 2 H); 2.62 (t, J = 7.1, 2 H); 2.08 (br. s, 1 H); 1.98 – 1.81 (m, 2 H). ¹³C-NMR (50 MHz): 157.8; 136.6; 134.5; 129.2; 128.7; 128.0; 127.1; 114.3; 70.0; 62.3; 33.3; 19.6. ESI-MS: 265 ([M + Na]⁺).

(3S)-1-[4-(Benzyloxy)phenyl]hex-5-en-3-ol (5). To a stirred soln. of iodoxybenzoic acid (2.5 g, 9.15 mmol) in dry DMSO (8 ml) was added a soln. of 3 (1.5 g, 6.19 mmol) in dry CH₂Cl₂ (35 ml) at r.t. and stirred for 5 h. After completion of the reaction, the mixture was filtered, diluted with H₂O (25 ml), and extracted with CH₂Cl₂ (2 × 30 ml). The combined org. layer was washed with brine (20 ml), dried (Na₂SO₄), and concentrated, and the residue purified by CC (hexane/AcOEt 1:9): (1.33 g, 90%) of 4. Colorless solid.

Separately, a mixture of (R)-BINOL (0.31 g, 1.1 mmol) and (i-PrO)₄Ti (0.15 g, 0.55 mmol) in CH₂Cl₂ (30 ml) in the presence of 4-Å molecular sieves (2.6 g) was stirred under reflux. After 1 h, the mixture was cooled to r.t., **4** (1.3 g, 5.54 mmol) was added, and the resulting mixture was stirred for 10 min. Then, the mixture was cooled to -78° , allyltributylstannane (2.3 g, 7.2 mmol) was added, and stirring was continued at -20° for 72 h. After completion of the reaction (TLC), the reaction was quenched with sat. NaHCO₃ soln. (5 ml), stirred for an additional 45 min, and extracted with CH₂Cl₂ (40 ml). The org. phase was washed with H₂O (15 ml), dried (Na₂SO₄), and concentrated and the residue purified by CC (AcOEt/hexane 2:8): **5** (1.20 g, 79%). Colorless solid. HPLC (*Chiralpack IB* (250 × 4.6 mm, 5 µm), hexane/i-PrOH 95:5, flow rate 1 ml/min, UV/VIS detector): 94.69% ee. [α]_D²⁵ = -16 (c = 1.8, CHCl₃). IR (neat): 3441, 2924, 2856, 1610, 1509, 1457, 1378, 1236, 1174, 1020. ¹H-NMR (CDCl₃, 300 MHz): 7.43 – 7.29 (m, 5 H); 7.08 (d, J = 8.7, 2 H); 6.88 (d, J = 8.7, 2 H); 5.88 – 5.07 (m, 1 H); 5.19 – 5.07 (m, 1 H); 5.02 (g, 2 H); 3.69 – 3.58 (g, 1 H); 2.81 – 2.56 (g, 2 H); 2.36 – 2.09 (g, 2 H); 1.79 – 1.68 (g, 2 H); 1.64 – 1.52 (br. g, 1 H). g 1.3C-NMR (75 MHz): 157.05; 137.2; 134.2; 129.3; 128.5; 127.8; 127.4; 118.3; 114.8; 69.99; 69.77; 42.2; 38.70; 31.18. HR-ESI-MS: 300.1957 ([g + NH₄]+, C₁₉H₂₆NO₂+; calc. 300.1958).

 $(4\$,6\$) - 4 - \{2 - \{4 - (Benzyloxy)phenyl\} - 6 - (iodomethyl) - 1,3 - dioxan - 2 - one \ (\textbf{7}). \ To \ a stirred soln. \ of \ \textbf{6} \ (1.54\ g, 4.03\ mmol) \ in \ dry \ MeCN \ (25\ ml) \ was \ added \ I_2 \ (2.04\ g, 8.06\ mmol) \ at \ -40^\circ \ and \ stirred \ for \ 10\ h. \ After completion \ of \ the reaction \ (TLC), \ aq. \ Na_2S_2O_3 \ soln. \ (50\ ml) \ followed \ by \ aq. \ NaHCO_3 \ soln. \ (40\ ml) \ were \ added. \ The \ mixture \ was \ then \ extracted \ with \ AcOEt \ (3\times30\ ml), \ the \ extract \ washed \ with \ H_2O \ (15\ ml), \ dried \ (Na_2SO_4), \ and \ concentrated, \ and \ the \ residue \ purified \ by \ CC \ (AcOEt/hexane 3:7): \ pure \ \textbf{7} \ (1.49\ g, 82\%). \ Colorless \ oil. \ [a]_{15}^{25} = -10 \ (c=1, CHCl_3). \ IR \ (neat): \ 3029, \ 2923, \ 2854, \ 1746, \ 1610, \ 1510, \ 1455, \ 1383, \ 1238, \ 1177, \ 1106. \ ^1H-NMR \ (300\ MHz): \ 7.43 - 7.34 \ (m, 5\ H); \ 7.08 \ (d, J=8.7, 2\ H); \ 6.88 \ (d, J=8.7, 2\ H); \ 5.02 \ (s, 2\ H); \ 4.64 - 4.53 \ (m, 1\ H); \ 4.50 - 4.29 \ (m, 1\ H); \ 3.48 - 3.34 \ (m, 1\ H); \ 3.29 - 3.17 \ (m, 1\ H); \ 2.84 - 2.59 \ (m, 1\ H); \ 2.39 - 2.30 \ (m, 1\ H); \ 1.97 - 1.53 \ (m, 4\ H). \ ^{13}C-NMR \ (75\ MHz): \ 177.8; \ 156.9; \ 137.91; \ 131.8; \ 128.9; \ 128.1; \ 127.5; \ 127.0; \ 114.6; \ 75.0; \ 74.7; \ 69.6; \ 36.1; \ 31.4; \ 29.6; \ 3.88. \ HR-ESI-MS: \ 470.0826 \ ([M+NH_4]^+, \ C_{20}H_{23}INO_4^+; \ calc. \ 470.0823).$

(2S)-4-[4-(Benzyloxy)phenyl]-1-[(2S)-oxiran-2-yl]butan-2-ol (=(α S,2S)- α -[2-[4-(Benzyloxy)phenyl]ethyl]oxirane-2-ethanol; **8**). To a stirred soln. of **7** (1.49 g, 3.29 mmol) in MeOH (25 ml) was added K₂CO₃ (2.2 g, 16.03 mmol) at 0°. The mixture was then warmed and stirred at r.t. for 2 h. After completion of the reaction (TLC), aq. NaHCO₃ soln. (40 ml) was added, and the mixture was extracted with AcOEt (3 × 25 ml). The combined org. phase was dried (Na₂SO₄), the solvent evaporated, and the residue purified by CC (AcOEt/hexane 4:6): **8** (0.84 g, 86%). Colorless oil. [α]⁵_D = -13 (c = 0.9, CHCl₃). IR (neat): 3429, 2927, 2856, 1611, 1510, 1460, 1379, 1244, 1174, 1076. ¹H-NMR (300 MHz): 7.43 - 7.34 (m, 5 H); 7.08 (d, J = 8.7, 2 H); 6.88 (d, J = 8.7, 2 H); 5.02 (g, 2 H); 4.00 - 3.81 (g, 1 H); 2.68 - 2.40 (g, 5 H); 1.93 - 1.53 (g, 4 H). ¹³C-NMR (75 MHz): 157.0; 137.2; 129.9; 128.5; 127.8; 127.4; 114.8; 70.0; 49.8; 47.7; 40.2; 40.0; 30.4. ESI-MS: 321.04 ([g] + Na]⁺).

 $\{(1S)-3-[4-(Benzyloxy)phenyl]-1-[\{(2S)-oxiran-2-yl]methyl\}propoxy\}$ (tert-butyl)dimethylsilane (9). To a stirred soln. of **8** (0.9 g, 3.02 mmol) and 1*H*-imidazole (0.41 g, 6.04 mmol) in dry CH₂Cl₂ (20 ml) was added 'BuMe₂SiCl (0.9 g, 6.04 mmol) slowly at 0°, and the mixture was stirred for 5 h. After completion of the reaction (TLC), the reaction was quenched with H₂O (15 ml), the mixture extracted with CH₂Cl₂ (3 × 10 ml), the combined org. extract washed with brine, dried (Na₂SO₄), and concentrated, and the residue purified by CC (AcOEt/hexane 1:9): pure **9** (1.09 g, 88%). Colorless oil. $[a]_{D}^{125} = -11.3$ (c = 0.7, CHCl₃). IR (neat): 3429, 2969, 2854, 1641, 1511, 1465, 1250, 1169, 1075. ¹H-NMR (200 MHz): 7.44-7.34

 $(m, 5 \text{ H}); 7.08 (d, J=8.7, 2 \text{ H}); 6.88 (d, J=8.7, 2 \text{ H}); 5.02 (s, 2 \text{ H}); 4.03-3.83 (m, 1 \text{ H}); 2.68-2.38 (m, 5 \text{ H}); 1.93-1.53 (m, 4 \text{ H}); 0.93 (s, 9 \text{ H}); 0.06 (s, 6 \text{ H}). $^{13}\text{C-NMR}$ (75 \text{ MHz}): 157.0; 137.2; 131.7; 129.2; 128.5; 127.8; 127.4; 114.8; 70.0; 49.8; 47.7; 40.2; 40.08; 30.48; 25.89; 18.09; <math>-4.36$. ESI-MS: 435.6 ([$M+\text{Na}]^+$)

(4R,6S)-8-[4-(Benzyloxy)phenyl]-6-[(Ient-butyl)dimethylsityl]oxy]oct-1-en-4-ol (10). To a soln. of 9 (0.860 g, 2.08 mmol) in dry Et₂O (20 ml) at 0° was added slowly 2m CH₂=CHMgBr/Et₂O (4.17 ml, 8.34 mmol) and stirred for 20 min under N₂. After completion of the reaction (TLC), the reaction was quenched with sat. NH₄Cl soln. (20 ml) and extracted with AcOEt (2 × 10 ml). The combined org. extract was washed with brine, dried (Na₂SO₄), and concentrated to afford a 'syn'/'anti' 43:57 alcohol mixture in 76% yield, which was purified by CC (AcOEt/hexane 2:8): pure 10 ('syn'-isomer; 0.4 g, 32.68%). Viscous liquid. [a] $_{D}^{25}$ = -0.8 (c = 1, CHCl $_{3}$). IR (neat): 1710, 1612, 1510, 1455, 1238. 1 H-NMR (200 MHz): 7.44 – 7.29 (m, 5 H); 7.08 (d, J = 8.7, 2 H); 6.88 (d, J = 8.7, 2 H); 6.12 (m, 1 H); 5.24 – 5.12 (m, 2 H); 5.02 (s, 2 H); 4.01 – 3.92 (m, 1 H); 3.89 – 3.76 (m, 1 H); 2.82 – 2.71 (m, 2 H); 2.18 – 2.04 (m, 2 H); 1.94 – 1.53 (m, 4 H); 0.92 (s, 9 H); 0.04 (s, 6 H). 13 C-NMR (50 MHz): 157.0; 138.6; 135.0; 134.3; 129.5; 129.1; 128.5; 127.1; 119.9; 115.1; 74.5; 70.2; 69.4; 44.9; 39.6; 30.0; 25.8; 19.2; – 4.36. ESI-MS: 463 ([M + Na] $^{+}$).

(1R,3S)-5-[4-(Benzyloxy)phenyl]-3-[[(tert-butyl)dimethylsilyl]oxy]-1-(prop-2-en-1-yl)pentyl Prop-2-enoate (11). To a stirred soln. of 10 (0.40 g, 0.90 mmol) in dry CH₂Cl₂ (20 ml) was added prop-2-enoyl chloride (0.149 g, 1.65 mmol) and Et₃N (0.22 g, 2.2 mmol) at 0°. The mixture was allowed to warm to r.t. and stirred for 4 h. After completion of the reaction (TLC), the mixture was diluted with H₂O (15 ml) and extracted with CH₂Cl₂ (2 × 10 ml). The combined org. extract was washed with brine, dried (Na₂SO₄), and concentrated, and the residue purified by CC (AcOEt/hexane 2:8): pure 11 (0.404 g, 90%). Colorless solid. [α] $_{25}^{25}$ = -7.3 (c = 0.6, CHCl₃). IR (neat): 2923, 2854, 1746, 1610, 1510, 1238, 1106. ¹H-NMR (200 MHz): 7.43 - 7.29 (m, 5 H); 7.08 (d, J = 8.7, 2 H); 6.88 (d, J = 8.7, 2 H); 6.20 - 6.11 (m, 1 H); 6.03 - 5.86 (m, 1 H); 5.72 - 5.51 (m, 2 H); 5.20 - 5.06 (m, 3 H); 5.02 (s, 2 H); 4.64 - 4.52 (m, 1 H); 2.69 - 2.51 (m, 2 H); 2.40 - 2.29 (m, 2 H); 1.93 - 1.53 (m, 4 H); 0.92 (s, 9 H); 0.04 (s, 6 H). ¹³C-NMR (50 MHz): 169.5; 155.4; 137.4; 133.6; 132.5; 131.3; 130.3; 129.7; 128.8; 128.6; 127.9; 127.1; 118.3; 114.8; 75.0; 70.0; 69.6; 38.9; 35.7; 30.8; 25.8; 18.0; -4.3. ESI-MS: 517 ([M + Na] $^+$).

(6R)-6- $\{(2S)$ -4- $\{4$ - $(Benzyloxy)phenyl\}$ -2- $\{\{(tert$ -butyl)dimethylsilyl\}oxy $\}$ butyl $\}$ -5,6-dihydro-2H-pyran-2-one (12). To a stirred soln. of 1st generation *Grubbs*' catalyst (5 mol-%) in dry CH₂Cl₂ (20 ml) at 55° was added 11 (0.3 g, 0.60 mmol) in CH₂Cl₂ (15 ml) and refluxed for 9 h. After completion of the reaction (TLC), the mixture was cooled, the solvent evaporated, and the crude product purified by CC (AcOEt/hexane 3:7): pure 12 (0.232 g, 82%). Colorless solid. IR (neat): 2923, 2854, 1736, 1636, 1510, 1459, 1238, 1165, 916. 1 H-NMR (200 MHz): 7.43 – 7.24 (m, 7 H); 7.01 (m, 1 H); 6.88 (d, d = 8.7, 2 H); 6.00 (d, d = 9.8, 1 H); 5.02 (g, 2 H); 4.65 – 4.54 (g, 1 H); 4.03 – 3.84 (g, 1 H); 286 – 2.63 (g, 2 H); 2.43 – 2.31 (g, 2 H); 1.93 – 1.53 (g, 4 H); 0.93 (g, 9 H); 0.05 (g, 6 H). ESI-MS: 489 (g

(6R)-5,6-Dihydro-6-[(2S)-2-hydroxy-4-(4-hydroxyphenyl)butyl]-2H-pyran-2-one (1). To a stirred soln. of **12** (0.20 g, 0.429 mmol) in dry CH₂Cl₂ (15 ml) under N₂ at 0° was added TiCl₄ (0.6 ml, 0.90 mmol), and the mixture was stirred at r.t. for 2 h. After completion of the reaction (TLC), the reaction was quenched with sat. aq. NaHCO₃ soln. (10 ml) and the mixture extracted with CHCl₃ (2 × 10 ml). The combined org. layer was washed with H₂O and brine, dried (Na₂SO₄), and concentrated, and the crude residue purified by CC (AcOEt/hexane 3:7): pure **1** (0.092 g, 82%). Colorless solid. [α]_D²⁵ = +39.8 (c = 0.4, CHCl₃) ([3]: [α]_D²⁵ = +40.2 (c = 0.4, CHCl₃)). IR (neat): 3428, 2968, 2863, 1710, 1510, 1453, 1249. ¹H-NMR (200 MHz): 7.08 (d, J = 7.9, 2 H); 6.92 – 6.81 (m, 1 H); 6.77 (d, J = 7.9, 2 H); 6.05 (d, J = 9.9, 1 H); 4.96 (br. s, 1 H); 4.64 – 4.53 (m, 1 H); 4.12 – 3.88 (m, 1 H); 3.82 (br. s, 1 H); 2.77 – 2.59 (m, 2 H); 2.39 – 2.30 (m, 2 H); 2.00 – 1.70 (m, 4 H). ¹³C-NMR (50 MHz): 165.3; 153.5; 145.6; 143.5; 131.3; 129.5; 129.7; 128.6; 120.9; 114.6; 75.4; 69.2; 44.5; 38.4; 30.9; 29.9. HR-MS: 285.1100 ([M + Na]⁺, C₁₅H₁₈O₄Na⁺; calc. 285.1106).

REFERENCES

- S. E. Drewes, B. M. Schlapelo, M. M. Horn, R. Scott-Shaw, O. Sandor, *Phytochemistry* 1995, 38, 1427; J. Jodynis-Liebert, M. Murias, E. Bloszyk, *Planta Med.* 2000, 66, 199; R. Pereda-Miranda, M. Fragoso-Serrano, C. M. Cerda-Garcia-Rojas, *Tetrahedron* 2001, 57, 47; M. Carda, F. Gonzalez, E. Castillo, S. Rodriguez, J. Marco, *Eur. J. Org. Chem.* 2002, 2649; J. Murga, E. Falomir, J. Garcia-Fortanet, M. Carda, J. A. Marco, *Org. Lett.* 2002, 4, 3447.
- [2] J. A. Marco, M. Carda, J. Murga, E. Falomir, Tetrahedron 2007, 63, 2929.
- [3] M. Ovedraogo, H. Carreyre, C. Vandelrouck, J. Bescound, G. Raymond, I.-P. Guissou, C. Cognard, F. Becq, D. Potreau, A. Cousson, J. Marrot, J.-M. Coustard, J. Nat. Prod. 2007, 70, 2006.
- [4] V. Suresh, J. J. P. Selvam, K. Rajesh, Y. Venkateswarlu, *Tetrahedron: Asymmetry* 2008, 19, 1509; V. Suresh, K. Rajesh, J. J. P. Selvam, Y. Venkateswarlu, *Tetrahedron Lett.* 2008, 49, 7358.
- [5] P. Alvarez-Bercedo, E. Falomir, J. Murga, M. Carda, J. A. Marco, Eur. J. Org. Chem. 2008, 4015; P. Srihari, G. Rajender, R. S. Rao, J. S. Yadav, Tetrahedron Lett. 2008, 49, 5590; B. Das, K. Suneel, G. Lakshmi, D. NandanKumar, Tetrahedron: Asymmetry 2009, 20, 1536; G. Sabitha, V. Bhaskar, S. S. Sankara Reddy, J. S. Yadav, Synthesis 2009, 19, 3285.
- [6] G. E. Keck, K. H. Tarbet, L. S. Geraci, J. Am. Chem. Soc. 1993, 115, 8467; G. E. Keck, D. Krishnamurthy, M. C. Grier, J. Org. Chem. 1993, 58, 6543; N. Gogoi, J. Boruwa, N. C. Barua, Eur. J. Org. Chem. 2006, 1722.
- [7] L. F. Felpin, J. Lebreton, J. Org. Chem. 2002, 67, 9192.
- [8] R. E. Taylor, M. Jin, Org. Lett. 2003, 5, 4959; J. J. W. Duan, A. B. Smith, J. Org. Chem. 1993, 58, 3703;
 P. A. Bartlett, J. D. Meadows, E. G. Brown, A. Morimoto, K. K. Jernstedt, J. Org. Chem. 1982, 47, 4013.
- [9] S. D. Rychnovsky, D. J. Skalitzky, Tetrahedron Lett. 1990, 31, 945; D. A. Evans, D. L. Rieger, J. R. Gage, Tetrahedron Lett. 1990, 31, 7099.
- [10] R. H. Grubbs, S. J. Miller, G. C. Fu, Acc. Chem. Res. 1995, 28, 446; R. H. Grubbs, Tetrahedron 2004, 60, 7117.

Received December 31, 2009